Math 3450 - Test2

Name:_____

Score	
1	
2	
3	
4	
5	
Т	

- 1. [16 points 4 each] Fill in the rest of the definition.
 - (a) Let A and B be sets and $f: A \to B$. We say that f is one-to-one if

(b) Let A and B be sets and $f: A \to B$. We say that f is onto if

(c) Let A and B be sets and $f: A \to B$. Let $X \subseteq A$. We define the image of X under f to be

f(X) =

(d) Let A and B be sets and $f : A \to B$. Let $Y \subseteq B$. We define the inverse image of Y under f to be

 $f^{-1}(Y) =$

- 2. [10 points 5 each] Let $f : \mathbb{R} \to \mathbb{R}$ be given by $f(x) = x^2 2$.
 - (a) Compute f([0,1]).
 - (b) Compute $f^{-1}([-3,0])$.

3. [20 points - 5 each] Let $f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ and $g : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ be given by the formulas $f(m, n) = (m + n, n^3)$ and g(m, n) = (2m + 1, n).

- (a) Compute g(0, 1) and also compute $(g \circ f)(1, 1)$.
- (b) Give a formula for $(g \circ f)(m, n)$.

(c) Prove that g is one-to-one.

(d) Show that g is not onto.

4. [10 points] Pick <u>ONE</u> of the following. If you do both then I will grade A.

A) Consider the function $\pi_4 : \mathbb{Z} \to \mathbb{Z}_4$ given by the formula $\pi_4(x) = \overline{x}$. Let $Y = \{\overline{2}\}$. Prove that $\pi_4^{-1}(Y) = \{4k+2 \mid k \in \mathbb{Z}\}.$

B) Let $S = \mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim (c, d)$ if and only if a + d = b + c. You can assume that \sim is an equivalence relation, no need to prove it. Define the operation $\overline{(a, b)} \oplus \overline{(c, d)} = \overline{(a + c, b + d)}$. Prove that \oplus is well-defined on the set of equivalence classes.

5. [10 points] Pick <u>ONE</u> of the following. If you do both then I will grade A.

A) Let A and B be sets and $f : A \to B$. Prove that if $W \subseteq A$ and $Z \subseteq A$ then $f(W \cup Z) = f(W) \cup f(Z)$.

B) Let A, B, and C be sets and $f : A \to B$ and $g : B \to C$. (i) Prove that if f and g are both onto, then $g \circ f$ is onto. (ii) Prove that if f and g are both one-to-one, then $g \circ f$ is one-to-one.