Math 3450 - Test 2

Name:

Score	
1	
2	
3	
4	
5	
T	

1. [16 points -4 each] Fill in the rest of the definition.
(a) Let A and B be sets and $f: A \rightarrow B$. We say that f is one-to-one if
(b) Let A and B be sets and $f: A \rightarrow B$. We say that f is onto if
(c) Let A and B be sets and $f: A \rightarrow B$. Let $X \subseteq A$. We define the image of X under f to be
$f(X)=$
(d) Let A and B be sets and $f: A \rightarrow B$. Let $Y \subseteq B$. We define the inverse image of Y under f to be
$f^{-1}(Y)=$
2. [10 points - 5 each] Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be given by $f(x)=x^{2}-2$.
(a) Compute $f([0,1])$.
(b) Compute $f^{-1}([-3,0])$.
3. [20 points-5 each] Let $f: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ and $g: \mathbb{Z} \times \mathbb{Z} \rightarrow \mathbb{Z} \times \mathbb{Z}$ be given by the formulas $f(m, n)=\left(m+n, n^{3}\right)$ and $g(m, n)=(2 m+1, n)$.
(a) Compute $g(0,1)$ and also compute $(g \circ f)(1,1)$.
(b) Give a formula for $(g \circ f)(m, n)$.
(c) Prove that g is one-to-one.
(d) Show that g is not onto.
4. [10 points] Pick ONE of the following. If you do both then I will grade A.
A) Consider the function $\pi_{4}: \mathbb{Z} \rightarrow \mathbb{Z}_{4}$ given by the formula $\pi_{4}(x)=\bar{x}$. Let $Y=\{\overline{2}\}$. Prove that $\pi_{4}^{-1}(Y)=\{4 k+2 \mid k \in \mathbb{Z}\}$.
B) Let $S=\mathbb{N} \times \mathbb{N}$. Define the relation \sim on S where $(a, b) \sim(c, d)$ if and only if $a+d=b+c$. You can assume that \sim is an equivalence relation, no need to prove it. Define the operation $\overline{(a, b)} \oplus \overline{(c, d)}=\overline{(a+c, b+d)}$. Prove that \oplus is well-defined on the set of equivalence classes.
5. [10 points] Pick ONE of the following. If you do both then I will grade A.
A) Let A and B be sets and $f: A \rightarrow B$. Prove that if $W \subseteq A$ and $Z \subseteq A$ then $f(W \cup Z)=f(W) \cup f(Z)$.
B) Let A, B, and C be sets and $f: A \rightarrow B$ and $g: B \rightarrow C$. (i) Prove that if f and g are both onto, then $g \circ f$ is onto. (ii) Prove that if f and g are both one-to-one, then $g \circ f$ is one-to-one.
